19/08/2021

Learning Stochastic Equivalence based on Discrete Ricci Curvature

Xuan Guo, Qiang Tian, Wang Zhang, Wenjun Wang, Pengfei Jiao

Keywords: Data Mining, Feature Extraction, Selection and Dimensionality Reduction, Mining Graphs, Semi Structured Data, Complex Data, Mining Text, Web, Social Media

Abstract: Role-based network embedding methods aim to preserve node-centric connectivity patterns, which are expressions of node roles, into low-dimensional vectors. However, almost all the existing methods are designed for capturing a relaxation of automorphic equivalence or regular equivalence. They may be good at structure identification but could show poorer performance on role identification. Because automorphic equivalence and regular equivalence strictly tie the role of a node to the identities of all its neighbors. To mitigate this problem, we construct a framework called Curvature-based Network Embedding with Stochastic Equivalence (CNESE) to embed stochastic equivalence. More specifically, we estimate the role distribution of nodes based on discrete Ricci curvature for its excellent ability to concisely representing local topology. We use a Variational Auto-Encoder to generate embeddings while a degree-guided regularizer and a contrastive learning regularizer are leveraged to improving both its robustness and discrimination ability. The effectiveness of our proposed CNESE is demonstrated by extensive experiments on real-world networks.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers