14/06/2020

Structure Preserving Generative Cross-Domain Learning

Haifeng Xia, Zhengming Ding

Keywords: cross-domain generation, graph alignment, domain-specific classifiers

Abstract: Unsupervised domain adaptation (UDA) casts a light when dealing with insufficient or no labeled data in the target domain by exploring the well-annotated source knowledge in different distributions. Most research efforts on UDA explore to seek a domain-invariant classifier over source supervision. However, due to the scarcity of label information in the target domain, such a classifier has a lack of ground-truth target supervision, which dramatically obstructs the robustness and discrimination of the classifier. To this end, we develop a novel Generative cross-domain learning via Structure-Preserving (GSP), which attempts to transform target data into the source domain in order to take advantage of source supervision. Specifically, a novel cross-domain graph alignment is developed to capture the intrinsic relationship across two domains during target-source translation. Simultaneously, two distinct classifiers are trained to trigger the domain-invariant feature learning both guided with source supervision, one is a traditional source classifier and the other is a source-supervised target classifier. Extensive experimental results on several cross-domain visual benchmarks have demonstrated the effectiveness of our model by comparing with other state-of-the-art UDA algorithms.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers