02/02/2021

Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation

Xueyi Li, Tianfei Zhou, Jianwu Li, Yi Zhou, Zhaoxiang Zhang

Keywords:

Abstract: Acquiring sufficient ground-truth supervision to train deep vi- sual models has been a bottleneck over the years due to the data-hungry nature of deep learning. This is exacerbated in some structured prediction tasks, such as semantic segmen- tation, which requires pixel-level annotations. This work ad- dresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level anno- tations and pixel-level segmentation. We formulate WSSS as a novel group-wise learning task that explicitly models se- mantic dependencies in a group of images to estimate more reliable pseudo ground-truths, which can be used for training more accurate segmentation models. In particular, we devise a graph neural network (GNN) for group-wise semantic min- ing, wherein input images are represented as graph nodes, and the underlying relations between a pair of images are char- acterized by an efficient co-attention mechanism. Moreover, in order to prevent the model from paying excessive atten- tion to common semantics only, we further propose a graph dropout layer, encouraging the model to learn more accurate and complete object responses. The whole network is end-to- end trainable by iterative message passing, which propagates interaction cues over the images to progressively improve the performance. We conduct experiments on the popular PAS- CAL VOC 2012 and COCO benchmarks, and our model yields state-of-the-art performance. Our code is available at: https://github.com/Lixy1997/Group-WSSS.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38947832
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers