06/12/2020

Domain Adaptation with Conditional Distribution Matching and Generalized Label Shift

Remi Tachet des Combes, Han Zhao, Yu-Xiang Wang, Geoffrey Gordon

Keywords:

Abstract: Adversarial learning has demonstrated good performance in the unsupervised domain adaptation setting, by learning domain-invariant representations. However, recent work has shown limitations of this approach when label distributions differ between the source and target domains. In this paper, we propose a new assumption, \textit{generalized label shift} ($\glsa$), to improve robustness against mismatched label distributions. $\glsa$ states that, conditioned on the label, there exists a representation of the input that is invariant between the source and target domains. Under $\glsa$, we provide theoretical guarantees on the transfer performance of any classifier. We also devise necessary and sufficient conditions for $\glsa$ to hold, by using an estimation of the relative class weights between domains and an appropriate reweighting of samples. Our weight estimation method could be straightforwardly and generically applied in existing domain adaptation (DA) algorithms that learn domain-invariant representations, with small computational overhead. In particular, we modify three DA algorithms, JAN, DANN and CDAN, and evaluate their performance on standard and artificial DA tasks. Our algorithms outperform the base versions, with vast improvements for large label distribution mismatches. Our code is available at \url{https://tinyurl.com/y585xt6j}.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers