23/08/2020

SEAL: Learning heuristics for community detection with generative adversarial networks

Yao Zhang, Yun Xiong, Yun Ye, Tengfei Liu, Weiqiang Wang, Yangyong Zhu, Philip S. Yu

Keywords: community detection, reinforcement learning, graph combinatorial optimization, generative adversarial networks

Abstract: Community detection is an important task with many applications. However, there is no universal definition of communities, and a variety of algorithms have been proposed based on different assumptions. In this paper, we instead study the semi-supervised community detection problem where we are given several communities in a network as training data and aim to discover more communities. This setting makes it possible to learn concepts of communities from data without any prior knowledge. We propose the Seed Expansion with generative Adversarial Learning (SEAL), a framework for learning heuristics for community detection. SEAL contains a generative adversarial network, where the discriminator predicts whether a community is real or fake, and the generator generates communities that cheat the discriminator by implicitly fitting characteristics of real ones. The generator is a graph neural network specialized in sequential decision processes and gets trained by policy gradient. Moreover, a locator is proposed to avoid well-known free-rider effects by forming a dual learning task with the generator. Last but not least, a seed selector is utilized to provide promising seeds to the generator. We evaluate SEAL on 5 real-world networks and prove its effectiveness.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3394486.3403154#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at KDD 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers