02/02/2021

Topological Machine Learning Methods for Power System Responses to Contingencies

Brian Bush, Yuzhou Chen, Dorcas Ofori-Boateng, Yulia R. Gel

Keywords:

Abstract: While deep learning tools, coupled with the emerging machinery of topological data analysis, are proven to deliver various performance gains in a broad range of applications, from image classification to biosurveillance to blockchain fraud detection, their utility in areas of high societal importance such as power system modeling and, particularly, resilience quantification in the energy sector yet remains untapped. To provide fast acting synthetic regulation and contingency reserve services to the grid while having minimal disruptions on customer quality of service, we propose a new topology-based system that depends on a neural network architecture for impact metric classification and prediction in power systems. This novel topology-based system allows one to evaluate the impact of three power system contingency types, in conjunction with transmission lines, transformers, and transmission lines combined with transformers. We show that the proposed new neural network architecture equipped with local topological measures facilitates more accurate classification of unserved load as well as the amount of unserved load. In addition, we are able to learn more about the complex relationships between electrical properties and local topological measurements on their simulated response to contingencies for the NREL-SIIP power system.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38951150
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers