18/11/2020

Network representation learning algorithm based on neighborhood influence sequence

Meng Liu, Ziwei Quan, Yong Liu

Keywords:

Abstract: Network representation learning (NRL) is playing an important role in network analysis, aiming to represent complex network more concisely by transforming nodes into low-dimensional vectors. However, most of the current work only uses network structure and node attribute to learn network representation, and often ignores the historical interactions between nodes that will affect the future interactions. Therefore, we propose a network representation learning algorithm based on neighborhood influence sequence (NIS), by investigating the influence of node historical interactions on future interactions. We propose three kinds of influence when two nodes interact, and integrate them into NIS by introducing the Hawkes process. In experiments, we compare our model with existing NRL models on four real-world datasets. Experimental results demonstrate that the embedding learned from the proposed NIS model achieve better performance than state-of-the-art methods in various tasks including node classification, link prediction, and network visualization.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers