16/11/2020

Learning a Simple and Effective Model for Multi-turn Response Generation with Auxiliary Tasks

Yufan Zhao, Can Xu, Wei Wu

Keywords: multi-turn generation, response generation, word recovery, utterance recovery

Abstract: We study multi-turn response generation for open-domain dialogues. The existing state-of-the-art addresses the problem with deep neural architectures. While these models improved response quality, their complexity also hinders the application of the models in real systems. In this work, we pursue a model that has a simple structure yet can effectively leverage conversation contexts for response generation. To this end, we propose four auxiliary tasks including word order recovery, utterance order recovery, masked word recovery, and masked utterance recovery, and optimize the objectives of these tasks together with maximizing the likelihood of generation. By this means, the auxiliary tasks that relate to context understanding can guide the learning of the generation model to achieve a better local optimum. Empirical studies with three benchmarks indicate that our model can significantly outperform state-of-the-art generation models in terms of response quality on both automatic evaluation and human judgment, and at the same time enjoys a much faster decoding process.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EMNLP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers