02/11/2020

Low-complexity models for acoustic scene classification based on receptive field regularization and frequency damping

Khaled Koutini, Florian Henkel, Hamid Eghbal-Zadeh, Gerhard Widmer

Keywords:

Abstract: Deep Neural Networks are known to be very demanding in terms of computing and memory requirements. Due to the ever increasing use of embedded systems and mobile devices with a limited resource budget, designing low-complexity models without sacrificing too much of their predictive performance gained great importance. In this work, we investigate and compare several well-known methods to reduce the number of parameters in neural networks. We further put these into the context of a recent study on the effect of the Receptive Field (RF) on a model’s performance, and empirically show that we can achieve high-performing low-complexity models by applying specific restrictions on the RFs, in combination with parameter reduction methods. Additionally, we propose a filter-damping technique for regularizing the RF of models, without altering their architecture and changing their parameter counts. We will show that incorporating this technique improves the performance in various low-complexity settings such as pruning and decomposed convolution. Using our proposed filter damping, we achieved the 1st rank at the DCASE-2020 Challenge in the task of Low-Complexity Acoustic Scene Classification.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at DCASE 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers