02/02/2021

Preventing Repeated Real World AI Failures by Cataloging Incidents: The AI Incident Database

Sean McGregor

Keywords:

Abstract: Mature industrial sectors (e.g., aviation) collect their real world failures in incident databases to inform safety improvements. Intelligent systems currently cause real world harms without a collective memory of their failings. As a result, companies repeatedly make the same mistakes in the design, development, and deployment of intelligent systems. A collection of intelligent system failures experienced in the real world (i.e., incidents) is needed to ensure intelligent systems benefit people and society. The AI Incident Database is an incident collection initiated by an industrial/non-profit cooperative to enable AI incident avoidance and mitigation. The database supports a variety of research and development use cases with faceted and full text search on more than 1,000 incident reports archived to date.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38951110
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers