15/11/2020

WATCHER: In-Situ Failure Diagnosis

Hongyu Liu, Sam Silvestro, Xiangyu Zhang, Jian Huang, Tongping Liu

Keywords: In-Situ Diagnosis, Failure Diagnosis, Root Cause Analysis

Abstract: Diagnosing software failures is important but notoriously challenging. Existing work either requires extensive manual effort, imposing a serious privacy concern (for in-production systems), or cannot report sufficient information for bug fixes. This paper presents a novel diagnosis system, named WATCHER, that can pinpoint root causes of program failures within the failing process ("in-situ"), eliminating the privacy concern. It combines identical record-and-replay, binary analysis, dynamic analysis, and hardware support together to perform the diagnosis without human involvement. It further proposes two optimizations to reduce the diagnosis time and diagnose failures with control flow hijacks. WATCHER can be easily deployed, without requiring custom hardware or operating system, program modification, or recompilation. We evaluate WATCHER with 24 program failures in real-world deployed software, including large-scale applications, such as Memcached, SQLite, and OpenJPEG. Experimental results show that WATCHER can accurately identify the root causes in only a few seconds.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at OOPSLA 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers