Abstract:
There is a cognitive bias in the hacker community to select a piece of software and invest significant human resources into finding bugs in that software without any prior indication of success. We label this strategy depth-first search and propose an alternative: breadth-first search. In breadth-first search, humans perform minimal work to enable automated analysis on a range of targets before committing additional time and effort to research any particular one. We present a repeatable human study that leverages teams of varying skill while using automation to the greatest extent possible. Our goal is a process that is effective at finding bugs; has a clear plan for the growth, coaching,and efficient use of team members; and supports measurable, incremental progress. We derive an assembly-line process that improves on what was once intricate, manual work. Our work provides evidence that the breadth-first approach increases the effectiveness of teams.