19/08/2021

AutoBandit: A Meta Bandit Online Learning System

Miao Xie, Wotao Yin, Huan Xu

Keywords: Machine Learning, General, General

Abstract: Recently online multi-armed bandit (MAB) is growing rapidly, as novel problem settings and algorithms motivated by various practical applications are being studied, building on the top of the classic bandit problem. However, identifying the best bandit algorithm from lots of potential candidates for a given application is not only time-consuming but also relying on human expertise, which hinders the practicality of MAB. To alleviate this problem, this paper outlines an intelligent system called AutoBandit, equipped with many out-of-the-box MAB algorithms, for automatically and adaptively choosing the best with suitable hyper-parameters online. It is effective to help a growing application for continuously maximizing cumulative rewards of its whole life-cycle. With a flexible architecture and user-friendly web-based interfaces, it is very convenient for the user to integrate and monitor online bandits in a business system. At the time of publication, AutoBandit has been deployed for various industrial applications.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers