03/08/2020

Fair Contextual Multi-Armed Bandits: Theory and Experiments

Yifang Chen, Alex Cuellar, Haipeng Luo, Jignesh Modi, Heramb Nemlekar, Stefanos Nikolaidis

Keywords:

Abstract: When an AI system interacts with multiple users, it frequently needs to make allocation decisions. For instance, a virtual agent decides whom to pay attention to in a group, or a factory robot selects a worker to deliver a part.Demonstrating fairness in decision making is essential for such systems to be broadly accepted. We introduce a Multi-Armed Bandit algorithm with fairness constraints, where fairness is defined as a minimum rate at which a task or a resource is assigned to a user. The proposed algorithm uses contextual information about the users and the task and makes no assumptions on how the losses capturing the performance of different users are generated. We provide theoretical guarantees of performance and empirical results from simulation and an online user study. The results highlight the benefit of accounting for contexts in fair decision making, especially when users perform better at some contexts and worse at others.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at UAI 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers