12/09/2020

WOLED: A tool for Online Learning Weighted Answer Set Rules for Temporal Reasoning Under Uncertainty

Nikos Katzouris, Alexander Artikis

Keywords: KR related tools and systems-General, Case studies for KR systems-General, Applications that combine KR with machine learning-General

Abstract: Complex Event Recognition (CER) systems detect event occurrences in streaming time-stamped input using predefined event patterns. Logic-based approaches are of special interest in CER, since, via Statistical Relational AI, they combine uncertainty-resilient reasoning with time and change, with machine learning, thus alleviating the cost of manual event pattern authoring. We present WOLED, a system based on Answer Set Programming (ASP), capable of probabilistic reasoning with complex event patterns in the form of weighted rules in the Event Calculus, whose structure and weights are learnt online. We compare our ASP-based implementation with a Markov Logic-based one and with a crisp version of the algorithm that learns unweighted rules, on CER datasets for activity recognition, maritime surveillance and fleet management. Our results demonstrate the superiority of our novel implementation, both in terms of efficiency and predictive performance.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at KR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers