03/05/2021

Multi-Level Local SGD: Distributed SGD for Heterogeneous Hierarchical Networks

Timothy Castiglia, Anirban Das, Stacy Patterson

Keywords: Convergence Analysis, Heterogeneous, Distributed, Hierarchical Networks, Stochastic Gradient Descent, Machine Learning, Federated Learning

Abstract: We propose Multi-Level Local SGD, a distributed stochastic gradient method for learning a smooth, non-convex objective in a multi-level communication network with heterogeneous workers. Our network model consists of a set of disjoint sub-networks, with a single hub and multiple workers; further, workers may have different operating rates. The hubs exchange information with one another via a connected, but not necessarily complete communication network. In our algorithm, sub-networks execute a distributed SGD algorithm, using a hub-and-spoke paradigm, and the hubs periodically average their models with neighboring hubs. We first provide a unified mathematical framework that describes the Multi-Level Local SGD algorithm. We then present a theoretical analysis of the algorithm; our analysis shows the dependence of the convergence error on the worker node heterogeneity, hub network topology, and the number of local, sub-network, and global iterations. We illustrate the effectiveness of our algorithm in a multi-level network with slow workers via simulation-based experiments.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers