26/04/2020

Decentralized Deep Learning with Arbitrary Communication Compression

Anastasia Koloskova*, Tao Lin*, Sebastian U Stich, Martin Jaggi

Keywords:

Abstract: Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks, as well as for efficient scaling to large compute clusters. As current approaches are limited by network bandwidth, we propose the use of communication compression in the decentralized training context. We show that Choco-SGD achieves linear speedup in the number of workers for arbitrary high compression ratios on general non-convex functions, and non-IID training data. We demonstrate the practical performance of the algorithm in two key scenarios: the training of deep learning models (i) over decentralized user devices, connected by a peer-to-peer network and (ii) in a datacenter.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers