14/09/2020

ELSIM: End-to-end learning of reusable skills through intrinsic motivation

Arthur Aubret, Laetitia Matignon, Salima Hassas

Keywords: intrinsic motivation, curriculum learning, developmental learning, reinforcement learning

Abstract: Taking inspiration from developmental learning, we present a novel reinforcement learning architecture which hierarchically learns and represents self-generated skills in an end-to-end way. With this architecture, an agent focuses only on task-rewarded skills while keeping the learning process of skills bottom-up. This bottom-up approach allows to learn skills that 1 - are transferable across tasks, 2 - improve exploration when rewards are sparse. To do so, we combine a previously defined mutual information objective with a novel curriculum learning algorithm, creating an unlimited and explorable tree of skills. We test our agent on simple gridworld environments to understand and visualize how the agent distinguishes between its skills. Then we show that our approach can scale on more difficult MuJoCo environments in which our agent is able to build a representation of skills which improves over a baseline both transfer learning and exploration when rewards are sparse.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ECML PKDD 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers