02/02/2021

Progressive Multi-task Learning with Controlled Information Flow for Joint Entity and Relation Extraction

Kai Sun, Richong Zhang, Samuel Mensah, Yongyi Mao, Xudong Liu

Keywords:

Abstract: Multitask learning has shown promising performance in learning multiple related tasks simultaneously, and variants of model architectures have been proposed, especially for supervised classification problems. One goal of multitask learning is to extract a good representation that sufficiently captures the relevant part of the input about the output for each learning task. To achieve this objective, in this paper we design a multitask learning architecture based on the observation that correlations exist between outputs of some related tasks (e.g. entity recognition and relation extraction tasks), and they reflect the relevant features that need to be extracted from the input. As outputs are unobserved, our proposed model exploits task predictions in lower layers of the neural model, also referred to as early predictions in this work. But we control the injection of early predictions to ensure that we extract good task-specific representations for classification. We refer to this model as a Progressive Multitask learning model with Explicit Interactions (PMEI). Extensive experiments on multiple benchmark datasets produce state-of-the-art results on the joint entity and relation extraction task.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948476
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers