06/12/2021

Structural Credit Assignment in Neural Networks using Reinforcement Learning

Dhawal Gupta, Gabor Mihucz, Matthew Schlegel, James Kostas, Philip S. Thomas, Martha White

Keywords: deep learning, reinforcement learning and planning

Abstract: Structural credit assignment in neural networks is a long-standing problem, with a variety of alternatives to backpropagation proposed to allow for local training of nodes. One of the early strategies was to treat each node as an agent and use a reinforcement learning method called REINFORCE to update each node locally with only a global reward signal. In this work, we revisit this approach and investigate if we can leverage other reinforcement learning approaches to improve learning. We first formalize training a neural network as a finite-horizon reinforcement learning problem and discuss how this facilitates using ideas from reinforcement learning like off-policy learning. We show that the standard on-policy REINFORCE approach, even with a variety of variance reduction approaches, learns suboptimal solutions. We introduce an off-policy approach, to facilitate reasoning about the greedy action for other agents and help overcome stochasticity in other agents. We conclude by showing that these networks of agents can be more robust to correlated samples when learning online.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers