26/04/2020

Composing Task-Agnostic Policies with Deep Reinforcement Learning

Ahmed H. Qureshi, Jacob J. Johnson, Yuzhe Qin, Taylor Henderson, Byron Boots, Michael C. Yip

Keywords: composition, transfer learning, deep reinforcement learning

Abstract: The composition of elementary behaviors to solve challenging transfer learning problems is one of the key elements in building intelligent machines. To date, there has been plenty of work on learning task-specific policies or skills but almost no focus on composing necessary, task-agnostic skills to find a solution to new problems. In this paper, we propose a novel deep reinforcement learning-based skill transfer and composition method that takes the agent's primitive policies to solve unseen tasks. We evaluate our method in difficult cases where training policy through standard reinforcement learning (RL) or even hierarchical RL is either not feasible or exhibits high sample complexity. We show that our method not only transfers skills to new problem settings but also solves the challenging environments requiring both task planning and motion control with high data efficiency.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers