19/08/2021

Inter-Task Similarity for Lifelong Reinforcement Learning in Heterogeneous Tasks

Sergio A. Serrano

Keywords: Machine Learning, Transfer, Adaptation, Multi-task Learning, Reinforcement Learning, Incremental Learning, Learning in Robotics

Abstract: Reinforcement learning (RL) is a learning paradigm in which an agent interacts with the environment it inhabits to learn in a trial-and-error way. By letting the agent acquire knowledge from its own experience, RL has been successfully applied to complex domains such as robotics. However, for non-trivial problems, training an RL agent can take very long periods of time. Lifelong machine learning (LML) is a learning setting in which the agent learns to solve tasks sequentially, by leveraging knowledge accumulated from previously solved tasks to learn better/faster in a new one. Most LML works heavily rely on the assumption that tasks are similar to each other. However, this may not be true for some domains with a high degree of task-diversity that could benefit from adopting a lifelong learning approach, e.g., service robotics. Therefore, in this research we will address the problem of learning to solve a sequence of RL heterogeneous tasks (i.e., tasks that differ in their state-action space).

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers