26/04/2020

Synthesizing Programmatic Policies that Inductively Generalize

Jeevana Priya Inala, Osbert Bastani, Zenna Tavares, Armando Solar-Lezama

Keywords: Program synthesis, reinforcement learning, inductive generalization

Abstract: Deep reinforcement learning has successfully solved a number of challenging control tasks. However, learned policies typically have difficulty generalizing to novel environments. We propose an algorithm for learning programmatic state machine policies that can capture repeating behaviors. By doing so, they have the ability to generalize to instances requiring an arbitrary number of repetitions, a property we call inductive generalization. However, state machine policies are hard to learn since they consist of a combination of continuous and discrete structures. We propose a learning framework called adaptive teaching, which learns a state machine policy by imitating a teacher; in contrast to traditional imitation learning, our teacher adaptively updates itself based on the structure of the student. We show that our algorithm can be used to learn policies that inductively generalize to novel environments, whereas traditional neural network policies fail to do so.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers

 17:00