06/12/2020

Information-theoretic Task Selection for Meta-Reinforcement Learning

Ricardo Luna Gutierrez, Matteo Leonetti

Keywords:

Abstract: In Meta-Reinforcement Learning (meta-RL) an agent is trained on a set of tasks to prepare for and learn faster in new, unseen, but related tasks. The training tasks are usually hand-crafted to be representative of the expected distribution of target tasks and hence all used in training. We show that given a set of training tasks, learning can be both faster and more effective (leading to better performance in the target tasks), if the training tasks are appropriately selected. We propose a task selection algorithm based on information theory, which optimizes the set of tasks used for training in meta-RL, irrespectively of how they are generated. The algorithm establishes which training tasks are both sufficiently relevant for the target tasks, and different enough from one another. We reproduce different meta-RL experiments from the literature and show that our task selection algorithm improves the final performance in all of them.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers