16/11/2020

Improving Grammatical Error Correction Models with Purpose-Built Adversarial Examples

Lihao Wang, Xiaoqing Zheng

Keywords: grammatical correction, sequence-to-sequence learning, neural networks, gec

Abstract: A sequence-to-sequence (seq2seq) learning with neural networks empirically shows to be an effective framework for grammatical error correction (GEC), which takes a sentence with errors as input and outputs the corrected one. However, the performance of GEC models with the seq2seq framework heavily relies on the size and quality of the corpus on hand. We propose a method inspired by adversarial training to generate more meaningful and valuable training examples by continually identifying the weak spots of a model, and to enhance the model by gradually adding the generated adversarial examples to the training set. Extensive experimental results show that such adversarial training can improve both the generalization and robustness of GEC models.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EMNLP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers