16/11/2020

Neural Mask Generator: Learning to Generate Adaptive Word Maskings for Language Model Adaptation

Minki Kang, Moonsu Han, Sung Ju Hwang

Keywords: self-supervised pre-training, question answering, task, reinforcement learning

Abstract: We propose a method to automatically generate a domain- and task-adaptive maskings of the given text for self-supervised pre-training, such that we can effectively adapt the language model to a particular target task (e.g. question answering). Specifically, we present a novel reinforcement learning-based framework which learns the masking policy, such that using the generated masks for further pre-training of the target language model helps improve task performance on unseen texts. We use off-policy actor-critic with entropy regularization and experience replay for reinforcement learning, and propose a Transformer-based policy network that can consider the relative importance of words in a given text. We validate our Neural Mask Generator (NMG) on several question answering and text classification datasets using BERT and DistilBERT as the language models, on which it outperforms rule-based masking strategies, by automatically learning optimal adaptive maskings.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EMNLP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers