16/11/2020

Affective Event Classification with Discourse-enhanced Self-training

Yuan Zhuang, Tianyu Jiang, Ellen Riloff

Keywords: affective classification, classification models, bert-based model, classifier

Abstract: Prior research has recognized the need to associate affective polarities with events and has produced several techniques and lexical resources for identifying affective events. Our research introduces new classification models to assign affective polarity to event phrases. First, we present a BERT-based model for affective event classification and show that the classifier achieves substantially better performance than a large affective event knowledge base. Second, we present a discourse-enhanced self-training method that iteratively improves the classifier with unlabeled data. The key idea is to exploit event phrases that occur with a coreferent sentiment expression. The discourse-enhanced self-training algorithm iteratively labels new event phrases based on both the classifier′s predictions and the polarities of the event′s coreferent sentiment expressions. Our results show that discourse-enhanced self-training further improves both recall and precision for affective event classification.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EMNLP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers