19/08/2021

Regularising Knowledge Transfer by Meta Functional Learning

Pan Li, Yanwei Fu, Shaogang Gong

Keywords: Machine Learning, Classification, Transfer, Adaptation, Multi-task Learning, Weakly Supervised Learning

Abstract: Machine learning classifiers’ capability is largely dependent on the scale of available training data and limited by the model overfitting in data-scarce learning tasks. To address this problem, this work proposes a novel Meta Functional Learning (MFL) by meta-learning a generalisable functional model from data-rich tasks whilst simultaneously regularising knowledge transfer to data-scarce tasks. The MFL computes meta-knowledge on functional regularisation generalisable to different learning tasks by which functional training on limited labelled data promotes more discriminative functions to be learned. Moreover, we adopt an Iterative Update strategy on MFL (MFL-IU). This improves knowledge transfer regularisation from MFL by progressively learning the functional regularisation in knowledge transfer. Experiments on three Few-Shot Learning (FSL) benchmarks (miniImageNet, CIFAR-FS and CUB) show that meta functional learning for regularisation knowledge transfer can benefit improving FSL classifiers.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers