05/01/2021

S3-Net: A Fast and Lightweight Video Scene Understanding Network by Single-Shot Segmentation

Yuan Cheng, Yuchao Yang, Hai-Bao Chen, Ngai Wong, Hao Yu

Keywords:

Abstract: Real-time understanding in video is crucial in various AI applications such as autonomous driving. This work presents a fast single-shot segmentation strategy for video scene understanding. The proposed net, called S3-Net, quickly locates and segments target sub-scenes, meanwhile extracts structured time-series semantic features as inputs to an LSTM-based spatio-temporal model. Utilizing tensorization and quantization techniques, S3-Net is intended to be lightweight for edge computing. Experiments using CityScapes, UCF11, HMDB51 and MOMENTS datasets demonstrate that the proposed S3-Net achieves an accuracy improvement of 8.1% versus the 3D-CNN based approach on UCF11, a storage reduction of 6.9x and an inference speed of 22.8 FPS on CityScapes with a GTX1080Ti GPU.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at WACV 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers