14/06/2020

Unifying Training and Inference for Panoptic Segmentation

Qizhu Li, Xiaojuan Qi, Philip H.S. Torr

Keywords: panoptic segmentation, scene parsing, object detection, semantic segmentation, instance segmentation, instance affinity, end-to-end, lightweight, autonomous driving, image segmentation

Abstract: We present an end-to-end network to bridge the gap between training and inference pipeline for panoptic segmentation, a task that seeks to partition an image into semantic regions for "stuff" and object instances for "things". In contrast to recent works, our network exploits a parametrised, yet lightweight panoptic segmentation submodule, powered by an end-to-end learnt dense instance affinity, to capture the probability that any pair of pixels belong to the same instance. This panoptic submodule gives rise to a novel propagation mechanism for panoptic logits and enables the network to output a coherent panoptic segmentation map for both "stuff" and "thing" classes, without any post-processing. Reaping the benefits of end-to-end training, our full system sets new records on the popular street scene dataset, Cityscapes, achieving 61.4 PQ with a ResNet-50 backbone using only the fine annotations. On the challenging COCO dataset, our ResNet-50-based network also delivers state-of-the-art accuracy of 43.4 PQ. Moreover, our network flexibly works with and without object mask cues, performing competitively under both settings, which is of interest for applications with computation budgets.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers