30/11/2020

Dense Dual-Path Network for Real-time Semantic Segmentation

Xinneng Yang, Yan Wu, Junqiao Zhao, Feilin Liu

Keywords:

Abstract: Semantic segmentation has achieved remarkable results with high computational cost and a large number of parameters. However, real-world applications require efficient inference speed on embedded devices. Most previous works address the challenge by reducing depth, width and layer capacity of network, which leads to poor performance. In this paper, we introduce a novel Dense Dual-Path Network (DDPNet) for real-time semantic segmentation under resource constraints. We design a light-weight and powerful backbone with dense connectivity to facilitate feature reuse throughout the whole network and the proposed Dual-Path module (DPM) to sufficiently aggregate multi-scale contexts. Meanwhile, a simple and effective framework is built with a skip architecture utilizing the high-resolution feature maps to refine the segmentation output and an upsampling module leveraging context information from the feature maps to refine the heatmaps. The proposed DDPNet shows an obvious advantage in balancing accuracy and speed. Specifically, on Cityscapes test dataset, DDPNet achieves 75.3% mIoU with 52.6 FPS for an input of 1024 X 2048 resolution on a single GTX 1080Ti card. Compared with other state-of-the-art methods, DDPNet achieves a significant better accuracy with a comparable speed and fewer parameters.

The video of this talk cannot be embedded. You can watch it here:
https://accv2020.github.io/miniconf/poster_188.html
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACCV 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers

 4:52