16/11/2020

TartanVO: A Generalizable Learning-based VO

Wenshan Wang, Yaoyu Hu, Sebastian Scherer

Keywords:

Abstract: We present the first learning-based visual odometry (VO) model, which generalizes to multiple datasets and real-world scenarios and outperforms geometry-based methods in challenging scenes. We achieve this by leveraging the SLAM dataset TartanAir, which provides a large amount of diverse synthetic data in challenging environments. Furthermore, to make our VO model generalize across datasets, we propose an up-to-scale loss function and incorporate the camera intrinsic parameters into the model. Experiments show that a single model, TartanVO, trained only on synthetic data, without any finetuning, can be generalized to real-world datasets such as KITTI and EuRoC, demonstrating significant advantages over the geometry-based methods on challenging trajectories. Our code is available at https://github.com/castacks/tartanvo.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CoRL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers