14/06/2020

Attention Mechanism Exploits Temporal Contexts: Real-Time 3D Human Pose Reconstruction

Ruixu Liu, Ju Shen, He Wang, Chen Chen, Sen-ching Cheung, Vijayan Asari

Keywords: 3d human pose, attention mechanism, multi-scale dilation convolution, monocular motion reconstruction

Abstract: We propose a novel attention-based framework for 3D human pose estimation from a monocular video. Despite the general success of end-to-end deep learning paradigms, our approach is based on two key observations: (1) temporal incoherence and jitter are often yielded from a single frame prediction. (2) error rate can be remarkably reduced by increasing the receptive field in a video. Therefore, we design an attentional mechanism to adaptively identify significant frames and tensor outputs from each deep neural net layer, leading to a more optimal estimation. To achieve large temporal receptive fields, multi-scale dilated convolutions are employed to model long-range dependencies among frames. The architecture is straightforward to implement and can be flexibly adopted for real-time applications. Any off-the-shelf 2D pose estimation system, e.g. Mocap libraries, can be easily integrated in an ad-hoc fashion. We both quantitatively and qualitatively evaluate our method on various standard benchmark datasets (e.g. Human3.6M, HumanEva). Our method considerably outperforms all the state-of-the-art algorithms up to 8% error reduction (average mean per joint position error: 34.7) as compared to the best-reported results. Code is available at: (https://github.com/lrxjason/Attention3DHumanPose)

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers