30/11/2020

Video-Based Crowd Counting Using a Multi-Scale Optical Flow Pyramid Network

Mohammad Asiful Hossain, Kevin Cannons, Daesik Jang, Fabio Cuzzolin, Zhan Xu

Keywords:

Abstract: This paper presents a novel approach to the task of video-based crowd counting, which can be formalized as the regression problem of learning a mapping from an input image to an output crowd density map. Convolutional neural networks (CNNs) have demonstrated striking accuracy gains in a range of computer vision tasks, including crowd counting. However, the dominant focus within the crowd counting literature has been on the single-frame case or applying CNNs to videos in a frame-by-frame fashion without leveraging motion information. This paper proposes a novel architecture that exploits the spatiotemporal information captured in a video stream by combining an optical flow pyramid with an appearance-based CNN. Extensive empirical evaluation on five public datasets comparing against numerous state-of-the-art approaches demonstrates the efficacy of the proposed architecture, with our methods reporting best results on all datasets. Finally, a set of transfer learning experiments shows that, once the proposed model is trained on one dataset, it can be transferred to another using a limited number of training examples and still exhibit high accuracy.

The video of this talk cannot be embedded. You can watch it here:
https://accv2020.github.io/miniconf/poster_589.html
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACCV 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers