05/01/2021

3D Human Pose and Shape Estimation Through Collaborative Learning and Multi-View Model-Fitting

Zhongguo Li, Magnus Oskarsson, Anders Heyden

Keywords:

Abstract: 3D human pose and shape estimation plays a vital role in many computer vision applications. There are many deep learning based methods attempting to solve the problem only relying on single-view RGB images for training the network. However, since some public datasets are captured from multi-view cameras system, we propose a novel method to tackle the problem by putting optimization-based multi-view model-fitting into a regression-based learning loop from multi-view images. Firstly, a convolutional neural network (CNN) regresses the pose and shape of a parametric human body model (SMPL) from multi-view images. Then, utilizing the regressed pose and shape as initialization, we propose an improved multi-view optimization method based on the SMPLify method (MV-SMPLify) to fit the SMPL model to the multi-view images simultaneously. Subsequently, the optimized parameters can be adopted to supervise the training of the CNN model. This whole process forms a self-supervising framework which can combine the advantages of the CNN approach and the optimization-based approach through a collaborative process. In addition, the multi-view images can provide more comprehensive supervision for the training. Experiments on public datasets qualitatively and quantitatively demonstrate that our method outperforms previous approaches in a number of ways.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at WACV 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers