06/12/2020

Learning Object-Centric Representations of Multi-Object Scenes from Multiple Views

Nanbo Li, Cian Eastwood, Robert Fisher

Keywords:

Abstract: Learning object-centric representations of multi-object scenes is a promising approach towards machine intelligence, facilitating high-level reasoning and control from visual sensory data. However, current approaches for \textit{unsupervised object-centric scene representation} are incapable of aggregating information from multiple observations of a scene. As a result, these ``single-view'' methods form their representations of a 3D scene based only on a single 2D observation (view). Naturally, this leads to several inaccuracies, with these methods falling victim to single-view spatial ambiguities. To address this, we propose \textit{The Multi-View and Multi-Object Network (MulMON)}---a method for learning accurate, object-centric representations of multi-object scenes by leveraging multiple views. In order to sidestep the main technical difficulty of the \textit{multi-object-multi-view} scenario---maintaining object correspondences across views---MulMON iteratively updates the latent object representations for a scene over multiple views. To ensure that these iterative updates do indeed aggregate spatial information to form a complete 3D scene understanding, MulMON is asked to predict the appearance of the scene from novel viewpoints during training. Through experiments we show that MulMON better-resolves spatial ambiguities than single-view methods---learning more accurate and disentangled object representations---and also achieves new functionality in predicting object segmentations for novel viewpoints.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers