19/08/2021

Attention-based Pyramid Dilated Lattice Network for Blind Image Denoising

Mohammad Nikzad, Yongsheng Gao, Jun Zhou

Keywords: Computer Vision, 2D and 3D Computer Vision, Deep Learning

Abstract: Though convolutional neural networks (CNNs) with residual and dense aggregations have obtained much attention in image denoising, they are incapable of exploiting different levels of contextual information at every convolutional unit in order to infer different levels of noise components with a single model. In this paper, to overcome this shortcoming we present a novel attention-based pyramid dilated lattice (APDL) architecture and investigate its capability for blind image denoising. The proposed framework can effectively harness the advantages of residual and dense aggregations to achieve a great trade-off between performance, parameter efficiency, and test time. It also employs a novel pyramid dilated convolution strategy to effectively capture contextual information corresponding to different noise levels through the training of a single model. Our extensive experimental investigation verifies the effectiveness and efficiency of the APDL architecture for image denoising as well as JPEG artifacts suppression tasks.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers