22/11/2021

Self-Supervised Real-time Video Stabilization

Jinsoo Choi, Jaesik Park, In So Kweon

Keywords: video stabilization, self supervised, real time

Abstract: Videos are a popular media form, where online video streaming has recently gathered much popularity. In this work, we propose a novel method of real-time video stabilization - transforming a shaky video to a stabilized video as if it were stabilized via gimbals in real-time. Our framework is trainable in a self-supervised manner, which does not require data captured with special hardware setups (i.e., two cameras on a stereo rig or additional motion sensors). Our framework consists of a transformation estimator between given frames for global stability adjustments, followed by a scene parallax reduction module via spatially smoothed optical flow for further stability. Then, a margin inpainting module fills in the missing margin regions created during stabilization to reduce the amount of post-cropping. These sequential steps reduce distortion and margin cropping to a minimum while enhancing stability. Hence, our approach outperforms state-of-the-art real-time video stabilization methods as well as offline methods that require camera trajectory optimization. Our method procedure takes approximately 24.3 ms yielding 41 fps regardless of resolution (e.g., 480p or 1080p).

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers