19/10/2020

Personalized bundle recommendation in online games

Qilin Deng, Kai Wang, Minghao Zhao, Zhene Zou, Runze Wu, Jianrong Tao, Changjie Fan, Liang Chen

Keywords: graph neural networks, recommender system, deep learning, link prediction, neural networks, bundle recommendation

Abstract: In business domains, bundling is one of the most important marketing strategies to conduct product promotions, which is commonly used in online e-commerce and offline retailers. Existing recommender systems mostly focus on recommending individual items that users may be interested in. In this paper, we target at a practical but less explored recommendation problem named bundle recommendation, which aims to offer a combination of items to users. To tackle this specific recommendation problem in the context of the virtual mall in online games, we formalize it as a link prediction problem on a user-item-bundle tripartite graph constructed from the historical interactions, and solve it with a neural network model that can learn directly on the graph-structure data. Extensive experiments on three public datasets and one industrial game dataset demonstrate the effectiveness of the proposed method. Further, the bundle recommendation model has been deployed in production for more than one year in a popular online game developed by Netease Games, and the launch of the model yields more than 60

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3340531.3412734#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CIKM 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers