14/09/2020

Why did my Consumer Shop? Learning an Efficient Distance Metric for Retailer Transaction Data

Yorick Spenrath, Marwan Hassani, Boudewijn van Dongen, Haseeb Tariq

Keywords: distance metric, transaction categorization, clustering, optimization

Abstract: Transaction analysis is an important part in studies aiming to understand consumer behaviour. The first step is defining a proper measure of similarity, or more specifically a distance metric, between transactions. Existing distance metrics on transactional data are built on retailer specific information, such as extensive product hierarchies or a large product catalogue. In this paper we propose a new distance metric that is retailer independent by design, allowing cross-retailer and cross-country analysis. The metric comes with a novel method of finding the importance of categories of products, alternating between unsupervised learning techniques and importance calibration. We test our methodology on a real-world dataset and show how we can identify clusters of consumer behaviour.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ECML PKDD 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers