19/10/2020

Gated heterogeneous graph representation learning for shop search in e-commerce

Xichuan Niu, Bofang Li, Chenliang Li, Rong Xiao, Haochuan Sun, Honggang Wang, Hongbo Deng, Zhenzhong Chen

Keywords: e-commerce, gated mechanism, heterogeneous graph, shop search

Abstract: In e-commerce search, vectorized matching is the most important approach besides lexical matching, where learning vector representations for entities (e.g., query, item, shop) plays a crucial role. In this work, we focus on vectorized search matching model for shop search in Taobao. Unlike item search, shop search is faced with serious behavior sparsity and long-tail problem. To tackle this, we take the first step to transfer knowledge from item search, i.e., leveraging items purchased under a query and the shops they belong to. Moreover, we propose a novel gated heterogeneous graph learning model (named GHL) to derive vector representations for entities. Both first-order and second-order proximity of queries and shops are exploited to fully mine the heterogeneous relationships. And to relieve long-tail phenomenon, we devise an innovative gated neighbor aggregation scheme where each type of entities (i.e., hot ones and long-tail ones) can benefit from the heterogeneous graph in an automatic way. Finally, the whole framework is jointly trained in an end-to-end fashion. Offline evaluation results on real-world data of Taobao shop search platform demonstrate that the proposed model outperforms existing graph based methods, and online A/B tests show that it is highly effective and achieves significant CTR improvements.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3340531.3412087#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CIKM 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers