25/07/2020

Influence function for unbiased recommendation

Jiangxing Yu, Hong Zhu, Chih-Yao Chang, Xinhua Feng, Bowen Yuan, Xiuqiang He, Zhenhua Dong

Keywords: recommender system, influence function, counterfactual learning

Abstract: Recommender system is one of the most successful machine learning technologies for commerce. However, it can reinforce the closed feedback loop problem, where the recommender system generates items to users, then the further recommendation model is trained with the data that users’ feedback to the items. Such self-reinforcing pattern can cause data bias problems. There are several debiasing methods, inverse-propensity-scoring (IPS) is a practical one for industry product. Since it is relatively easy to reweight training samples, and ameliorate the distribution shift problem. However,because of deterministic policy problem and confoundings in real-world data, it is hard to predict propensity score accurately. Inspired by the sample reweight work for robust deep learning, we propose a novel influence function based method for recommendation modeling, and analyze how the influence function corrects the bias. In the experiments, our proposed method achieves better performance against the state-of-the-art approaches.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3397271.3401321#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at SIGIR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers