19/10/2020

Improving multi-scenario learning to rank in e-commerce by exploiting task relationships in the label space

Pengcheng Li, Runze Li, Qing Da, An-Xiang Zeng, Lijun Zhang

Keywords: learning to rank, neural networks, e-commerce, multi-task learning

Abstract: Traditional Learning to Rank (LTR) models in E-commerce are usually trained on logged data from a single domain. However, data may come from multiple domains, such as hundreds of countries in international E-commerce platforms. Learning a single ranking function obscures domain differences, while learning multiple functions for each domain may also be inferior due to ignoring the correlations between domains. It can be formulated as a multi-task learning problem where multiple tasks share the same feature and label space. To solve the above problem, which we name Multi-Scenario Learning to Rank, we propose the Hybrid of implicit and explicit Mixture-of-Experts (HMoE) approach. Our proposed solution takes advantage of Multi-task Mixture-of-Experts to implicitly identify distinctions and commonalities between tasks in the feature space, and improves the performance with a stacked model learning task relationships in the label space explicitly. Furthermore, to enhance the flexibility, we propose an end-to-end optimization method with a task-constrained back-propagation strategy. We empirically verify that the optimization method is more effective than two-stage optimization required by the stacked approach. Experiments on real-world industrial datasets demonstrate that HMoE significantly outperforms the popular multi-task learning methods. HMoE is in-use in the search system of AliExpress and achieved 1.92

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3340531.3412713#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CIKM 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers