23/08/2020

Controllable multi-interest framework for recommendation

Yukuo Cen, Jianwei Zhang, Xu Zou, Chang Zhou, Hongxia Yang, Jie Tang

Keywords: recommender system, multi-interest framework, sequential recommendation

Abstract: Recently, neural networks have been widely used in e-commerce recommender systems, owing to the rapid development of deep learning. We formalize the recommender system as a sequential recommendation problem, intending to predict the next items that the user might be interacted with. Recent works usually give an overall embedding from a user’s behavior sequence. However, a unified user embedding cannot reflect the user’s multiple interests during a period. In this paper, we propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec. Our multi-interest module captures multiple interests from user behavior sequences, which can be exploited for retrieving candidate items from the large-scale item pool. These items are then fed into an aggregation module to obtain the overall recommendation. The aggregation module leverages a controllable factor to balance the recommendation accuracy and diversity. We conduct experiments for the sequential recommendation on two real-world datasets, Amazon and Taobao. Experimental results demonstrate that our framework achieves significant improvements over state-of-the-art models. Our framework has also been successfully deployed on the offline Alibaba distributed cloud platform.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3394486.3403344#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at KDD 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers