26/04/2020

Learning to Plan in High Dimensions via Neural Exploration-Exploitation Trees

Binghong Chen, Bo Dai, Qinjie Lin, Guo Ye, Han Liu, Le Song

Keywords: learning to plan, representation learning, learning to design algorithm, reinforcement learning, meta learning

Abstract: We propose a meta path planning algorithm named \emph{Neural Exploration-Exploitation Trees~(NEXT)} for learning from prior experience for solving new path planning problems in high dimensional continuous state and action spaces. Compared to more classical sampling-based methods like RRT, our approach achieves much better sample efficiency in high-dimensions and can benefit from prior experience of planning in similar environments. More specifically, NEXT exploits a novel neural architecture which can learn promising search directions from problem structures. The learned prior is then integrated into a UCB-type algorithm to achieve an online balance between \emph{exploration} and \emph{exploitation} when solving a new problem. We conduct thorough experiments to show that NEXT accomplishes new planning problems with more compact search trees and significantly outperforms state-of-the-art methods on several benchmarks.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers