25/07/2020

HME: A hyperbolic metric embedding approach for next-POI recommendation

Shanshan Feng, Lucas Vinh Tran, Gao Cong, Lisi Chen, Jing Li, Fan Li

Keywords: metric embedding, hyperbolic space, next-poi recommendation

Abstract: With the increasing popularity of location-aware social media services, next-Point-of-Interest (POI) recommendation has gained significant research interest. The key challenge of next-POI recommendation is to precisely learn users’ sequential movements from sparse check-in data. To this end, various embedding methods have been proposed to learn the representations of check-in data in the Euclidean space. However, their ability to learn complex patterns, especially hierarchical structures, is limited by the dimensionality of the Euclidean space. To this end, we propose a new research direction that aims to learn the representations of check-in activities in a hyperbolic space, which yields two advantages. First, it can effectively capture the underlying hierarchical structures, which are implied by the power-law distributions of user movements. Second, it provides high representative strength and enables the check-in data to be effectively represented in a low-dimensional space. Specifically, to solve the next-POI recommendation task, we propose a novel hyperbolic metric embedding (HME) model, which projects the check-in data into a hyperbolic space. The HME jointly captures sequential transition, user preference, category and region information in a unified approach by learning embeddings in a shared hyperbolic space. To the best of our knowledge, this is the first study to explore a non-Euclidean embedding model for next-POI recommendation. We conduct extensive experiments on three check-in datasets to demonstrate the superiority of our hyperbolic embedding approach over the state-of-the-art next-POI recommendation algorithms. Moreover, we conduct experiments on another four online transaction datasets for next-item recommendation to further demonstrate the generality of our proposed model.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3397271.3401049#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at SIGIR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers