14/06/2020

An Efficient PointLSTM for Point Clouds Based Gesture Recognition

Yuecong Min, Yanxiao Zhang, Xiujuan Chai, Xilin Chen

Keywords: gesture recognition, point cloud sequences, long short-term memory, action recognition, pointwise alignment

Abstract: Point clouds contain rich spatial information, which provides complementary cues for gesture recognition. In this paper, we formulate gesture recognition as an irregular sequence recognition problem and aim to capture long-term spatial correlations across point cloud sequences. A novel and effective PointLSTM is proposed to propagate information from past to future while preserving the spatial structure. The proposed PointLSTM combines state information from neighboring points in the past with current features to update the current states by a weight-shared LSTM layer. This method can be integrated into many other sequence learning approaches. In the task of gesture recognition, the proposed PointLSTM achieves state-of-the-art results on two challenging datasets (NVGesture and SHREC'17) and outperforms previous skeleton-based methods. To show its advantages in generalization, we evaluate our method on MSR Action3D dataset, and it produces competitive results with previous skeleton-based methods.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers