22/11/2021

Planar Shape Based Registration for Multi-modal Geometry

Muxingzi Li, Florent Lafarge

Keywords: global registration, energy minimization, geometric primitives, point cloud, polygonal mesh

Abstract: We present a global registration algorithm for multi-modal geometric data, typically 3D point clouds and meshes. Existing feature-based methods and recent deep learning based approaches typically rely upon point-to-point matching strategies that often fail to deliver accurate results from defect-laden data. In contrast, we reason at the scale of planar shapes whose detection from input data offers robustness on a range of defects, from noise to outliers through heterogeneous sampling. The detected planar shapes are projected into an accumulation space from which a rotational alignment is operated. A second step then refines the result with a local continuous optimization which also estimates the scale. We demonstrate the robustness and efficacy of our algorithm on challenging real-world data. In particular, we show that our algorithm competes well against state-of-the-art methods, especially on piece-wise planar objects and scenes.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers