14/06/2020

Smooth Shells: Multi-Scale Shape Registration With Functional Maps

Marvin Eisenberger, Zorah Lähner, Daniel Cremers

Keywords: shape correspondence, functional maps, shape registration, non-rigid correspondence, interclass matching

Abstract: We propose a novel 3D shape correspondence method based on the iterative alignment of so-called smooth shells. Smooth shells define a series of coarse-to-fine shape approximations designed to work well with multiscale algorithms. The main idea is to first align rough approximations of the geometry and then add more and more details to refine the correspondence. We fuse classical shape registration with Functional Maps by embedding the input shapes into an intrinsic-extrinsic product space. Moreover, we disambiguate intrinsic symmetries by applying a surrogate based Markov chain Monte Carlo initialization. Our method naturally handles various types of noise that commonly occur in real scans, like non-isometry or incompatible meshing. Finally, we demonstrate state-of-the-art quantitative results on several datasets and show that our pipeline produces smoother, more realistic results than other automatic matching methods in real world applications.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers