04/07/2020

Learning Lexical Subspaces in a Distributional Vector Space

Kushal Arora, Aishik Chakraborty, Jackie Chi Kit Cheung

Keywords: relatedness tasks, hypernymy classification, detection, word tasks

Abstract: In this paper, we propose LEXSUB, a novel approach towards unifying lexical and distributional semantics. We inject knowledge about lexical-semantic relations into distributional word embeddings by defining subspaces of the distributional vector space in which a lexical relation should hold. Our framework can handle symmetric attract and repel relations (e.g., synonymy and antonymy, respectively), as well as asymmetric relations (e.g., hypernymy and meronomy). In a suite of intrinsic benchmarks, we show that our model outperforms previous post-hoc approaches on relatedness tasks, and on hypernymy classification and detection while being competitive on word similarity tasks. It also outperforms previous systems on extrinsic classification tasks that benefit from exploiting lexical relational cues. We perform a series of analyses to understand the behaviors of our model.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers